Pandas math operations on column
Mathematical function on DataFrame
There are a number of mathematical functions.
1. Pandas Addition : add() function
The pandas add() function performs the addition of two DataFrames.
Syntax
pandas.DataFrame.add(other, axis=’columns’, level=None, fill_values=None)
Where:-
other :- scalar, sequence, Series, or any DataFrame
axis :- ( 0 or index, 1 or column )
level :- int to label
fill_value :- float or None, by default None
Example 1:- Addition of DataFrame using add() function
import pandas as pd df=pd.DataFrame( { ‘speed’ : [110,90,100], ‘weight’ : [500,550,600] }, index=[‘Audi’, ‘Suzuki’,’BMW’ ] ) print(“before add() function “) print(df) df.add(50) print(“After add() function “) print(df)
Its output will be-
before add() function
speed weight
Audi 110 500
Suzuki 90 550
BMW 100 600
After add() function
speed weight
Audi 160 550
Suzuki 140 600
BMW 150 650
Note:- You can see that the scaler value in add() function will add them to all elements in DataFrame.
Example 2:- In this example, we will see the addition of two DataFrame for this we will pass a DataFrame in add() function as an argument.
import pandas as pd df1=pd.DataFrame( { ‘speed’ : [110,90,100], ‘weight’ : [500,550,600] }, index=[‘Audi’, ‘Suzuki’,’BMW’ ] ) print(“before add() function “) print(df1) df2=add(df1) print(“After add() function “) print(df2)
Its output will be-
before add() function
speed weight
Audi 110 500
Suzuki 90 550
BMW 100 600
After add() function
speed weight
Audi 220 1000
Suzuki 180 1100
BMW 200 1200
2. Pandas Subtraction : sub() function
Example 1:-
import pandas as pd df=pd.DataFrame( { ‘speed’ : [110,90,100], ‘weight’ : [500,550,600] }, index=[‘Audi’, ‘Suzuki’,’BMW’ ] ) print(“before sub() function “) print(df) df=sub( [ 25,50], axis=’column’) print(“After sub() function “) print(df)
Its output will be-
before sub() function
speed weight
Audi 110 500
Suzuki 90 550
BMW 100 600
After sub() function
speed weight
Audi 85 450
Suzuki 65 500
BMW 75 550
Note:- we can see separate values is subtracted from each column of DataFrame.
Example 2:-
import pandas as pd df=pd.DataFrame( { ‘speed’ : [110,90,100], ‘weight’ : [500,550,600] }, index=[‘Audi’, ‘Suzuki’,’BMW’ ] ) print(“before sub() function “) print(df) df=sub (pd.Series( [10,20,30], index=[‘Audi’, ‘Suzuki’,’BMW’ ]), axis =’index’) print(“After sub() function “) print(df)
Its output will be-
before sub() function
speed weight
Audi 110 500
Suzuki 90 550
BMW 100 600
After sub() function
speed weight
Audi 100 490
Suzuki 70 530
BMW 70 570
3. Pandas Multipy : mul() function
The mul() function is used to perform multiplication operation on DataFRame.
Example 1 :-
import pandas as pd df1=pd.DataFrame( { ‘speed’ : [100,110,80], ‘weight’ : [500,550,600] }, index=[‘Audi’, ‘Suzuki’,’BMW’ ] ) df2=pd.DataFrame( { ‘speed’ : [80,90,100], ‘weight’ : [500,550,600] }, index=[‘Audi’, ‘Suzuki’,’BMW’ ] ) print(“before mul() function “) print(df1) print(df2) result=df1.mul(df2) print(“After mul() function “)
print(result)
Its output will be-
before mul() function
speed weight
Audi 100 500
Suzuki 100 550
BMW 80 600
speed weight
Audi 80 450
Suzuki 90 500
BMW 100 550
After mul() function
speed weight
Audi 8000 225000
Suzuki 9000 275000
BMW 8000 330000
4. Pandas Divion : div() function
The div() function is used to perform division operation on DataFRame.
Example:-
import pandas as pd df=pd.DataFrame( { ‘speed’ : [110,90,100], ‘weight’ : [500,550,600] }, index=[‘Audi’, ‘Suzuki’,’BMW’ ] ) print(“before add() function “) print(df) df.div(10) print(“After div() function “) print(df)
Its output will be-
before div() function
speed weight
Audi 110 500
Suzuki 90 550
BMW 100 600
After div() function
speed weight
Audi 11.0 50.0
Suzuki 9.0 55.0
BMW 10.0 60.0
In this post we have studied pandas arithmetic operations on columns.
If you like my post please share it with your friends by simply clicking the below social media button, and Don’t forget to comment so we will update ourselves.